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Abstract : An experi mental investigation was undertaken of the wake aerody namics of a 1/12.81 model
of a commercia l passenger aircraft. The tests were undertaken in the 3.05 m by 3.66 m working sectio n
of a closed-return wind-tunnel. The progra m made use of laser sheet visualization (LSV) and particle
image velocimetry (PIV) in planes, normal to the mean flow, to obtai n image s of flow-following, seed
particles. The images were processed to obtain raw velocity vector s, flow dive rgence , vorticity , cross­

flow energy and high quality visualizations. Image sequences obtained under identica l incide nt flow
conditions were used to conceptualize the variabi lity of principa l wake features, such as regions of fluid
of high vorticity.
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1. Introduction
A knowledge of the behavior and persistence of vorticity traili ng from the wing tips and flaps of aircraft wings is essentia l

in prescribi ng conditions for safe, close proximity flying (Fig .l , after Crowder, 1983). The present study addresses this

topic using LSV and PIV (Grant, 1997) to measure the complex flow fields at various downstream positions in the wake of

a model aircraft. Wet film methods were used in recording the raw flow images in a large laser illuminated zone since the

co nflicti ng requirements of image size, spatial reso lutio n and dynamic range meant that direct digital imagery was

inappropr iate (Adrian , 1997). The use of digita l PIV (DPIV) to obtai n the velocity field in the present circumstances would

also require the combi ning of sub-images obta ined at unrelated times and since the aim was to investigate the significa nt

meandering motio n of the vortex filamen ts this was an unsuitable approach. The work further deve lops the authors ' work in

the application of PIV to aerospace studies (Hurst et aI., 1997).

Fig. 1. Complex environment behind a wing illustrated by pressure losses contour plot (after Crowder,

1980).
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2. The Experiment

A PIV and LSV Study in the Wake of an Aircraft Model

A full span, l/1 2.81 scale, model of a representative passenger aircraft was mounted in the BAe Airbus Ltd, 3.05 m by 3.66
m, closed-return, wind- tunnel at Filton. The model was tested in a number of high lift configurations (i.e. with slats and
flaps deployed) but without nacelles and pylons fitted. Flow field measurements were made normal to the free stream at
five stations downstream of the wing by means of particle image velocimetry with the stream velocities being typically 60
m.s' (rable 1).

Table 1. Position of laser sheets relative to the starboard wingtip.

sheet position number distance downstream from the winq tip
1 87 mm
2 244 mm
3 492 mm
4 ~5mm

5 1250 mm

The wind-tunnel was seeded with polycrystalline powder of high scattering efficiency with a specific gravity of I
and an average diame ter, by number, of 6 um. The particle s were introd uced into the wind-tunnel through a small diameter
rake placed in the contractio n, well upstream of the model. The rake was lowered after particle introd uction to minimise
upstream flow disturbance. The powder was allowed to make a tunnel circuit before the PIV images were captured since
this allowed the wind tunnel turning vanes, fan, fan alignment blades and screens to thoroughly disperse the powder. The
use of seeding particles for quantitative flow visualisation relies on the use of particles which are of a suitable size and
density such that they efficiently follow the flow characteristics (Grant , 1997).

Two frequency dou bled Yag:Nd lasers were aligned to have the same optic al beam path and the beam shaped to
produce an expandi ng, vertical illuminated sheet which was introd uced through a small slot in the wall of the wind-tunnel
working section. The sheet was aligned normal to the flow and positioned at each of the five downstream planes of interest
in separate tests. The double-YAG arrangement was adopted in these tests since it allowed for greater flexibility in the
pulse separation time and offered the capacity for greater illuminating power. The lasers provided stroboscopic illumination
with a frequency of 10Hz with a time delay between the laser pulses of 60 - 80 us. The second laser was triggered
synchronously using an initiatio n pulse from the power supply of the first laser.

The images were captured by a 35 mm Nikon camera fitted with a flat field lens. The came ra was mounted on a
rigid strut which was shielded by a streamlined fairing. The strut was mounted on the wind-tunnel floor, 2.6 m downstream
of the model.

The seeding density was chosen such that either corre lation or tracking methodology could be implemented . The
implicit smoothing and spatial averaging of one-step corre lation was considered undesirab le in the present case and the
tracking method adopted . The availability of statistical (Gran t and Liu, 1989) and neural network (Grant and Pan, 1997)
tracking algorithms, both offerin g 'super-resolution,' and sub-pixel accuracy , recommended the adoption of this approach.
This returned individual velocity measurements with errors typically of less than one per cent.

The generation of vorticity within the wake of the aircraft is domin ated by the variation in cross-flow velocity.
Therefore emphasis was placed, during the tests, on the examination of flow field characteri stics in transverse planes.

Since a single camera was used to record the velocities in the transverse plane it was necessary to correct the
measureme nts for the effect of through-plane velocity . As shown elsewhere (Gran t et al., 1994) this parallax effect can be
compen sated for, providing an estimate of through sheet velocity is availab le. In the present tests through sheet velocity
was estimated from PIV measurements made in a laser sheet having the mean velocity vector and the vertica l axis in-plane.
In this instance camera s were mounted on the floor and in the wind-tunnel working section roof space.

The velocities in the cross-flow, illuminated planes were measured at the 5 stations downstream of the starboard
wing detailed in Table 1. The cross-wind horizontal (U) and vertical (V) velocity vector components were measured
throughout a region of 800 mm by 400 mm. This area allowed full exami nation of all the flow features relevant to this
investigatio n. The aircraft was in high-lift, landing configuration with double slotted flap deployed .

3. Data Processing

3.1 Raw Data
A typical data set obtained from a single PIV transparency is presented in Fig. 2.
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Fig. 2. Example raw velocity plot obta ined from PIV data .

3.2 Interpolation
Interpolation onto a regular grid is a common post data-extraction proced ure in PlY studies. It is advantageous to present
the data on a regular grid since it makes comparison with CFO packages easier.

Interpolated data were obtained in a linear, distance weighted , interpolation scheme utilising between 4 and 30
surr ounding measurements by means of a least squares proced ure (Fig. 3).
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Fig. 3. Example interpolated velocity vector plot derived from PIV data .

3.3 Derived Quantities
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Fig. 4. Example cross flow energy plot obtained from PIV data .

(iii) streamwise component of vorticity vector ( a;; -a;; )x b:~2 where i n is the mode) half span, 1.325 m, and the

frecstrcam velocity,~ is 60 m.s - I (Fig. 5)

150

100 Oi~,
50

25.0- /
-r

E - " 21.7
.§. 0 ~/ -

,--- 18.4

-50
,-'

15.1..J
~
o 11.8i=-100
~ 8.5w
> -150 5.2

-200 1.9

-250 ·1.4

-700 -600 -500 -400 -300 -200 -100 0 100 -4.1
HORIZONTAL (mm) -8.0

150

100

50
25.0

E 21.7E 0 18.4

..J -50 15.1
~
o 11.8i= ·100
~ 8.5w
> -150

5.2

-200 1.9

-250 ·1.4

-700 -600 -500 -400 ·300 -200 ·100 0 100 -4.7
HORIZONTAL (m m) -8.0

Fig. 5. Example vorticity plot obtained from PIV data .
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I f b/2This was obtained using the equivalent integration formul ae -- ( ~dy+ J!;dz) x - -
area V~
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(iv) streamwise component of divergence. This was obtained using the integration formulae _ _ 1_,((_ J!;dy+~dz) x b / 2
(Fig. 6) areaJ' V~
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Fig. 6. Example divergence plot obtained from PIV data.

4. Discussion
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The use of high image density visualisa tion provided the opportunity for improved conceptual appreciation of the variability
of thc dynamic wake. Two sets of images captured at random times are presented.

At one down stream position, 985 mm, example images, each containing around 100 raw veloci ty estimates are
shown (Fig. 7). The measured velocity vectors are superimposed on the raw image of the particles. This gives an indication
of vortex wander and clearly illustrates the limitation of time averaged data, experimental or numerical, in representing the
flow.

One record from each of the first four down stream positions was then chosen (Fig. 8). This gives an indication of
the vortex wande r with down stream position and co upled with Fig . 7 aga in emphas izes the import ance of the time
dependence of the spatial distr ibution of shed vorticity.

Examination of the velocity field in the full data set showed that the trailing vortex dominated the flow field. The
downw ash and upwash induced by the flap vortex, in the inboard and outboard sections of the wing respectively, can be
clearly observed. Cross flow velocities up to typically 30% of the streamwise velocity were generated, as shown in Fig. 2
with maximum values approaching 50%.

A further indica tion of the variability of the trailing vortex filaments was demonstrated by animating the digit ised
particle images. As reported by the authors elsewhere (Grant et al., 1998) the dynamic display of such raw particle images
can be used to obtain quantitative information regarding vortex dynamics in wake flows (see also Coton et al., 1997 and
Hurst et al., 1998). The vortex spins the seeding particles outwards leading to a void which can be used to accurately locate
the vortex centre. In addition to defining wake properties, feedback from the trailing vortex of the wing is one of the
important features producing the unsteady load so full field animation is a useful diagnostic tool in the present environment.

The measurement of this vortex movement is important to enable a full understanding of the flow field mechanics
down stream of the wing to be obtained. Time averaged spatial measurement techniqu es, e.g. pressure probe, hot wire
anemometry or LDA, would not provide this unsteady flow field information. This clearly demonstrates the advantages
provided by PIV which allow the measurement of instantaneous velocities throughout a flow field. These detailed flow
field data are very important in the development and validation of CFD techniqu es which can predict the full characteristics
of the flow field.
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Fig. 8. Typical PIV vector plots at first four

downstream positions.

Fig. 7. Typical PIV vector plots at one

downstream position.
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